统计策略搜索强化学习方法及应用 阿里云 lit azw3 txt pdf caj 下载 在线

统计策略搜索强化学习方法及应用电子书下载地址
内容简介:
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
书籍目录:
第1章 强化学习概述···························································································1
1.1 机器学习中的强化学习··········································································1
1.2 智能控制中的强化学习··········································································4
1.3 强化学习分支··························································································8
1.4 本书贡献·······························································································11
1.5 本书结构·······························································································12
参考文献········································································································14
第2章 相关研究及背景知识·············································································19
2.1 马尔可夫决策过程················································································19
2.2 基于值函数的策略学习算法·································································21
2.2.1 值函数·······················································································21
2.2.2 策略迭代和值迭代····································································23
2.2.3 Q-learning ··················································································25
2.2.4 基于小二乘法的策略迭代算法·············································27
2.2.5 基于值函数的深度强化学习方法·············································29
2.3 策略搜索算法························································································30
2.3.1 策略搜索算法建模····································································31
2.3.2 传统策略梯度算法(REINFORCE算法)······························32
2.3.3 自然策略梯度方法(Natural Policy Gradient)························33
2.3.4 期望化的策略搜索方法·····················································35
2.3.5 基于策略的深度强化学习方法·················································37
2.4 本章小结·······························································································38
参考文献········································································································39
第3章 策略梯度估计的分析与改进·································································42
3.1 研究背景·······························································································42
3.2 基于参数探索的策略梯度算法(PGPE算法)···································44
3.3 梯度估计方差分析················································································46
3.4 基于基线的算法改进及分析·························································48
3.4.1 基线的基本思想································································48
3.4.2 PGPE算法的基线······························································49
3.5 实验·······································································································51
3.5.1 示例···························································································51
3.5.2 倒立摆平衡问题········································································57
3.6 总结与讨论····························································································58
参考文献········································································································60
第4章 基于重要性采样的参数探索策略梯度算法··········································63
4.1 研究背景·······························································································63
4.2 异策略场景下的PGPE算法·································································64
4.2.1 重要性加权PGPE算法·····························································65
4.2.2 IW-PGPE算法通过基线减法减少方差····································66
4.3 实验结果·······························································································68
4.3.1 示例···························································································69
4.3.2 山地车任务················································································78
4.3.3 机器人仿真控制任务································································81
4.4 总结和讨论····························································································88
参考文献·····························
作者介绍:
赵婷婷,天津科技大学人工智能学院副教授,主要研究方向为人工智能、机器学习。中国计算机协会(CCF) 会员、YOCSEF 会员、中国人工智能学会会员、人工智能学会模式识别专委会委员,2017年获得天津市"131”创新型人才培养工程第二层次人选称号。
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
智能体AlphaGo战胜人类围棋专家刷新了人类对人工智能的认识,也使得其核心技术强化学习受到学术界的广泛关注。本书正是在如此背景下,围绕作者多年从事强化学习理论及应用的研究内容及国内外关于强化学习的最近动态等方面展开介绍,是为数不多的强化学习领域的专业著作。该著作侧重于基于直接策略搜索的强化学习方法,结合了统计学习的诸多方法对相关技术及方法进行分析、改进及应用。本书以一个全新的现代角度描述策略搜索强化学习算法。从不同的强化学习场景出发,讲述了强化学习在实际应用中所面临的诸多难题。针对不同场景,给定具体的策略搜索算法,分析算法中估计量和学习参数的统计特性,并对算法进行应用实例展示及定量比较。特别地,本书结合强化学习前沿技术将策略搜索算法应用到机器人控制及数字艺术渲染领域,给人以耳目一新的感觉。最后根据作者长期研究经验,对强化学习的发展趋势进行了简要介绍和总结。本书取材经典、全面,概念清楚,推导严密,以期形成一个集基础理论、算法和应用为一体的完备知识体系。
网站评分
书籍多样性:9分
书籍信息完全性:8分
网站更新速度:6分
使用便利性:9分
书籍清晰度:9分
书籍格式兼容性:9分
是否包含广告:3分
加载速度:7分
安全性:4分
稳定性:6分
搜索功能:5分
下载便捷性:4分
下载点评
- 经典(231+)
- 内容齐全(313+)
- 一般般(464+)
- 内涵好书(200+)
- 少量广告(323+)
- 强烈推荐(339+)
- azw3(178+)
- 种类多(328+)
- 中评多(168+)
- mobi(252+)
- 值得下载(173+)
- 无漏页(340+)
下载评价
- 网友 堵***格:
OK,还可以
- 网友 通***蕊:
五颗星、五颗星,大赞还觉得不错!~~
- 网友 邱***洋:
不错,支持的格式很多
- 网友 康***溪:
强烈推荐!!!
- 网友 冯***卉:
听说内置一千多万的书籍,不知道真假的
- 网友 索***宸:
书的质量很好。资源多
- 网友 薛***玉:
就是我想要的!!!
- 网友 田***珊:
可以就是有些书搜不到
- 网友 国***舒:
中评,付点钱这里能找到就找到了,找不到别的地方也不一定能找到
喜欢"统计策略搜索强化学习方法及应用"的人也看了
岁月台湾(第4版) 阿里云 lit azw3 txt pdf caj 下载 在线
中公教育山东省事业单位2020年事业编单考试用书全真模拟试卷公共基础知识预测试题题库济南泰安日照青岛公基中公教材书菏泽济宁市正版 阿里云 lit azw3 txt pdf caj 下载 在线
奈特绘图版医学全集 第1卷 阿里云 lit azw3 txt pdf caj 下载 在线
开放阅读.三年级 阿里云 lit azw3 txt pdf caj 下载 在线
中华宫廷秘史(8卷) 阿里云 lit azw3 txt pdf caj 下载 在线
一级注册建筑师考试建筑方案设计(作图)应试十要 阿里云 lit azw3 txt pdf caj 下载 在线
作文通讯(高中版)2012年1~6月合订本 阿里云 lit azw3 txt pdf caj 下载 在线
我不是最美空姐 我是最快乐空姐 星光二班林佩瑶的不纠结视角 活出简单的快乐 做我喜欢的自己 港台原版 时报出版 阿里云 lit azw3 txt pdf caj 下载 在线
品格素描几何体(3)/一线教学 阿里云 lit azw3 txt pdf caj 下载 在线
库存两本老教材创新方案历史高三总复习黑龙江教育出版社RB新老高考转型期高三历史高中生总复习同步练习创新方案历史书 阿里云 lit azw3 txt pdf caj 下载 在线
- 伟大的博物馆:拉斐尔凉廊 阿里云 lit azw3 txt pdf caj 下载 在线
- 用***P/IP进行网际互连(第一卷)(第六版)(英文版) 阿里云 lit azw3 txt pdf caj 下载 在线
- 长城 阿里云 lit azw3 txt pdf caj 下载 在线
- 静默的墓碑 阿里云 lit azw3 txt pdf caj 下载 在线
- 现代企业管理文书写作规范 阿里云 lit azw3 txt pdf caj 下载 在线
- 战国秦汉髹漆妆奁研究 阿里云 lit azw3 txt pdf caj 下载 在线
- 电池管理系统深度理论研究-面向大功率电池组的应用技术 阿里云 lit azw3 txt pdf caj 下载 在线
- SAT&ACT短语及逗号用法.只要一本掌握9787561189313 正版新书希望阶梯图书专营店 阿里云 lit azw3 txt pdf caj 下载 在线
- 拳击与速度滑冰训练监控 高维纬 北京体育大学出版社【正版书】 阿里云 lit azw3 txt pdf caj 下载 在线
- 菜根谭 正版书籍文白对照修身养性处世三大奇书之一中国处世智慧的经典不可不读的国学精髓开阔思想安顿身心的处世哲学畅销书籍 阿里云 lit azw3 txt pdf caj 下载 在线
书籍真实打分
故事情节:5分
人物塑造:4分
主题深度:9分
文字风格:5分
语言运用:7分
文笔流畅:3分
思想传递:5分
知识深度:8分
知识广度:9分
实用性:3分
章节划分:9分
结构布局:9分
新颖与独特:9分
情感共鸣:7分
引人入胜:5分
现实相关:5分
沉浸感:8分
事实准确性:7分
文化贡献:5分