磁性材料的新巡游电子模型(英文版) 阿里云 lit azw3 txt pdf caj 下载 在线

磁性材料的新巡游电子模型(英文版)电子书下载地址
内容简介:
《磁性材料的新巡游电子模型(英文版)》介绍几个长期困扰磁学界的难题,以及探索解决这些难题的一套全新磁性材料磁有序模型体系,包括关于典型磁性氧化物的巡游电子模型、关于典型磁性金属的新巡游电子模型,以及涵盖典型磁性金属和氧化物的磁有序能来源的外斯电子对模型。应用这三个模型研究典型磁性材料,不仅可以解释利用传统模型可以解释的实验现象,对一些长期困扰磁学界的难题也给出了合理解释。这三个模型的物理意义清晰,对于理解磁性材料的磁有序现象和设计新型磁性材料将有所帮助。
书籍目录:
Contents
1 Introduction 1
References 3
2 Electron Shell Structure of Free Atoms and Valence Electr*** in Crystals 5
2.1 Electron Shell Structure of Free Atoms 5
2.2 A Simple Introduction to Classical Crystal Binding Theory for Typical Magnetic Materials 6
2.3 Effective Radii of I*** in Crystals 8
2.4 Electron Binding Energy Originating from I*** in Crystals 9
References 11
3 A Simple Introduction to Basic Knowledge of Magnetic Materials 13
3.1 Classification of Matter Based on Magnetic Properties 13
3.2 Magnetic Domain and Domain Wall 16
3.3 Basic Parameters of Magnetic Materials 18
3.4 Magnetic Ordering Models in Conventional Ferromagnetism 21
References 24
4 Difficulties Faced by Conventional Magnetic Ordering Models 25
4.1 Disputes Over the Cation Distributi*** in Mn and Cr Spinel Ferrites 25
4.1.1 Normal, Inverse, and Mixed Spinel Structure 25
4.1.2 Magnetic Moments of 3d Transition Metal I*** 27
4.1.3 Magnetic Ordering of CrFe204 and MnFe204 27
4.2 Difficulties in Describing the Observed Magnetic Moments of Perovskite Manganites 31
4.3 Relati***hip Between Magnetic Moment and Resistivity in Typical Magnetic Metals 38
4.4 Puzzle for the Origin of Magnetic Ordering Energy 38
References 39
5 02p Itinerant Electron Model for Magnetic Oxides 43
5.1 A Simple Introduction to Early Investigati*** of Ionicity 43
5.2 Study of the Ionicity of Spinel Ferrites 45
5.2.1 Quantum-Mechanical Potential Barrier Model Used to Estimate Cation Distributi*** 46
5.2.2 Study of the Ionicity of Group II-VI Compounds Using the Quantum-Mechanical Potential Barrier Model 47
5.2.3 Study of Ionicity of Spinel Ferrite Fe3o4 48
5.2.4 Estimation of the Ionicity of Spinel Ferrites M3O4 Using the Quantum- Mechanical Potential Barrier Model 50
5.3 Experimental Studies of O 2p Holes in Oxides 51
5.3.1 O 2p Hole Studies Using Electron Energy Loss Spectroscopy 52
5.3.2 Several Other Experimental Investigati*** for O 2p Holes 54
5.4 Study of Negative Monovalent Oxygen I*** Using X-Ray P***oelectron Spectra 54
5.4.1 Study of Ionicity of BaTiC>3 and Several Monoxides Using O Is XPS 55
5.4.2 Effect of Argon Ion Etching on the O Is P***oelectron Spectra of SrTio3 60
5.5 O 2p Itinerant Electron Model for Magnetic Oxides (IEO Model) 70
5.6 Relati***hip Between the IEO Model and the Conventional Models 75
References 79
6 Magnetic Ordering of Typical Spinel Ferrites 81
6.1 Method Fitting Magnetic Moments of Typical Spinel Ferrites 81
6.1.1 X-ray Diffraction Analysis 82
6.1.2 Magnetic Property Measurements 84
6.1.3 Primary Factors that Affect Cation Distributi*** 85
6.1.4 Fitting the Magnetic Moments of the Samples 88
6.1.5 Discussion on Cation Distributi*** 91
6.2 Cation Distribution Characteristics in Typical Spinel Ferrites 94
References 100
7 Experimental Evidences of the IEO Model Obtained from Spinel Ferrites 101
7.1 Additional Antiferromagnetic Phase in Ti-Doped Spinel Ferrites 101
7.1.1 X-ray Diffraction Spectra of the Samples 102
7.1.2 X-ray Energy Dispersive Spectra of the Samples 104
7.1.3 Magnetic Measurements and Analysis of the Results 106
7.1.4 Cation Distributi*** of the Three Series of Ti-Doped Samples 108
7.1.5 Magnetic Ordering of Spinel Ferrites TicM1_xFe204 (M = Co, Mn) 115
7.2 Amplification of Spinel Ferrite Magnetic Moment Due to Cu Substituting for Cr 116
7.2.1 X-ray Energy Dispersive Spectrum Analysis 116
7.2.2 X-ray Diffraction Analysis 117
7.2.3 Magnetic Measurement and Magnetic Moment Fitting Results 118
7.3 Unusual Infrared Spectra of Cr Ferrite 122
7.3.1 Infrared Spectra of Spinel Ferrites M¥q2Oa (M=Fe, Co, Ni, Cu, Cr) 123
7.3.2 Dependency of the Peak Position V2 on the Magnetic Moment (Xm2) of Divalent M Cati*** in MFe2O4(M= Fe, Co, Ni, Cu, Cr) 125
7.3.3 Infrared Spectra of and CoCrxFe2-x04 126
References 126
8 Spinel Ferrites with Canted Magnetic Coupling 129
8.1 Spinel Ferrites with Fe Ratio Being Less Than 2.0 Per Molecule 129
8.2 Spinel Ferrites Containing Nonmagnetic Cati*** 132
8.2.1 Disputation of Nonmagnetic Cation Distribution 133
8.2.2 Fitting Sample Magnetic Moments 136
8.2.3 Discussion on Cation Distributi*** 137
References 145
9 Magnetic Ordering and Electrical Transport of Perovskite Manganites 147
9.1 Ferromagnetic and Antiferromagnetic Coupling in Typical Perovskite Manganites 147
9.1.1 Crystal Structure and Magnetic Measurement Results of Lai-xSrxMnOs Polycrystalline Powder Samples 147
9.1.2 Study of Valence and Ionicity of Lai-xSrxMn03 150
9.1.3 Fitting of the Curve of the Magnetic Moment Versus Sr Ratio for Lai-xSrxMn03 152
9.2 Spin-Dependent and Spin-Independent Electrical Transport of Perovskite Manganites 155
9.2.1 A Model with Two Channels of Electrical Transport for ABO3 Perovskite Manganites 156
9.2.2 Fitting the Curves of Resistivity Versus Test Temperature o
作者介绍:
暂无相关内容,正在全力查找中
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
Chapter 1 Introduction
One of the oldest applicati*** of magnetic materials is the use of compass. In modem times, the applicati*** of magnetic materials have benefited many fields, such as aviation, spaceflight,military affairs, radio, television, communication, and medicine, in the form of magnetic memory devices, magnets, transformers, and microwave devices.
However, some of the challenging problems on magnetic ordering phenomena have not been reasonably explained because of the lack of phenomenological expression of the magnetic ordering energy, or the energy of the Weiss molecular field. In 1907, Weiss proposed the presence of small regi*** in magnetic materials called magnetic domains. In each magnetic domain, atomic magnetic moments arrange in a certain order subjected to a “molecular field”. Magnetic domains have been observed in many experimental studies. However, the origin of the molecular field is yet to be explained satisfactorily.
Several different models for the magnetic ordering mechanism were introduced in the textbooks [14],including phenomenological spontaneous magnetization theory, exchange in***ction theory for spontaneous magnetization, spin-wave theory, and metal energy band theory. These theories are based on different assumpti*** and rely on different theoretical systems. Since they fail to explain several experimental phenomena, developing ferromagnetism theory is challenging.
In classical ferromagnetism, the origin of magnetic ordering energy was explained by using exchange in***cti*** of electr*** between i***, called direct exchange in***ction in magnetic metals and alloys, superexchange (SE) in***ction for the anti?ferromagnetic coupling between magnetic cati*** in an oxide, and double-exchange (DE) in***ction for the ferromagnetic coupling between magnetic cati*** in an oxide. Because nearly a thousand times difference for magnetic ordering energy between estimated (using the Curie temperature) and calculated (using classical electromagnetism model) values exist, the origin of magnetic ordering energy is c***idered to be a pure quantum-mechanical effect, independent of the classical electromagnetism model. However, magnetic material calculation using the density functional theory (DFT) based on quantum mechanics is challenging because the expression to calculate the magnetic ordering energy has not been developed.
No report has addressed the valence electron spectrum when the classical ferro?magnetism models were proposed before 1960. Since the 1970s, many studies have reported electron spectra of magnetic materials,and an improved understanding of the electrical transport mechanism for magnetic perovskite manganites was provided.
The magnetic DE in***ction was firstly used to explain the ferromagnetic coupling between Mn cati*** in ABO3 perovskite manganites, in particular, Lai_xSrxMn03. In the classical view [5,6], all oxygen ani*** are assumed to be O2- in these materials. With increasing Sr2 ratio (jc), an equal number of Mn4+ i*** exist in the system. The DE in***ction of 3d electr*** between Mn3+ and Mn4+ i*** mediated by O2- i***, was used to explain the magnetic ordering and the electrical transport phenomena in Lai_xSrxMn03.
However, based on the electron energy loss spectra and other electron spectrum experimental results, Alexandrov et al. [7] pointed out that the DE model contradicts these experimental results, which clearly showed that the current carriers are oxygen p ***s rather than d electr*** of ferromagnetic manganites. Studies have shown that O1- i*** may c***titute 30% or more of oxygen i*** in oxides. The outer electron shell of an O1- ion exists ap ***, which affects the magnetic and electrical transport properties of oxides. In fact, the effect of oxygen p ***s was accurately c***idered in the investigation of superconductor oxides [8] but has not been widely accepted in studies concerning magnetic oxides.
Our group cooperated with Professors Wu and Hu of State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, and published a series of articles about the new magnetic ordering models, including a review article in Physics Reports [9] titled “Three models of magnetic ordering in typical magnetic materials”. These models include an O 2p itinerant electron model for magnetic oxides (IEO model) [10,11], a new itinerant electron model for magnetic metals (IEM model) [12],and a Weiss electron-pair (WEP) model for the origin of magnetic ordering energy [13]. By using the IEO model that replaces the SE and DE models, the magnetic structures of not only Co-, Ni-,or Cu-doped spinel ferrites but also Cr-, Mn-, or Ti-doped spinel ferrites could be explained, moreover, the dependence of the magnetic moments on the Sr ratio in perovskite manganites (such as Lai_文SrxMno3) can be explained, fo***hich there have been many ongoing disputes regarding the cation distributi*** of these materials
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
《磁性材料的新巡游电子模型(英文版)》介绍几个长期困扰磁学界的难题,以及探索解决这些难题的一套全新磁性材料磁有序模型体系,包括关于典型磁性氧化物的巡游电子模型、关于典型磁性金属的新巡游电子模型,以及涵盖典型磁性金属和氧化物的磁有序能来源的外斯电子对模型。应用这三个模型研究典型磁性材料,不仅可以解释利用传统模型可以解释的实验现象,对一些长期困扰磁学界的难题也给出了合理解释。这三个模型的物理意义清晰,对于理解磁性材料的磁有序现象和设计新型磁性材料将有所帮助。
网站评分
书籍多样性:4分
书籍信息完全性:4分
网站更新速度:6分
使用便利性:6分
书籍清晰度:4分
书籍格式兼容性:3分
是否包含广告:9分
加载速度:3分
安全性:3分
稳定性:5分
搜索功能:6分
下载便捷性:9分
下载点评
- 排版满分(422+)
- 无多页(352+)
- 愉快的找书体验(462+)
- 体验还行(267+)
- 藏书馆(620+)
- mobi(431+)
- 推荐购买(454+)
- 内容完整(180+)
- 差评(651+)
下载评价
- 网友 仰***兰:
喜欢!很棒!!超级推荐!
- 网友 游***钰:
用了才知道好用,推荐!太好用了
- 网友 方***旋:
真的很好,里面很多小说都能搜到,但就是收费的太多了
- 网友 屠***好:
还行吧。
- 网友 印***文:
我很喜欢这种风格样式。
- 网友 汪***豪:
太棒了,我想要azw3的都有呀!!!
- 网友 益***琴:
好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。
- 网友 马***偲:
好 很好 非常好 无比的好 史上最好的
- 网友 谢***灵:
推荐,啥格式都有
- 网友 詹***萍:
好评的,这是自己一直选择的下载书的网站
- 网友 邱***洋:
不错,支持的格式很多
- 网友 菱***兰:
特好。有好多书
- 网友 寇***音:
好,真的挺使用的!
喜欢"磁性材料的新巡游电子模型(英文版)"的人也看了
关系数据库应用基础 阿里云 lit azw3 txt pdf caj 下载 在线
三亚珊瑚礁及其生物多样性 阿里云 lit azw3 txt pdf caj 下载 在线
排球竞赛规则(2013-2016国际排联2012年第33届***通过) 阿里云 lit azw3 txt pdf caj 下载 在线
证券法律制度的经济分析 阿里云 lit azw3 txt pdf caj 下载 在线
0-3岁幼儿安全感绘本·抱一抱:好朋友 阿里云 lit azw3 txt pdf caj 下载 在线
丁一晨漫画纪念套装(时间会把我们变成喜欢的样子+毕业了,却开始怀念+走你,小五+好想回到小时候) 阿里云 lit azw3 txt pdf caj 下载 在线
攻杀练习篇-智慧棋道-少儿学G际象棋( 货号:754642182) 阿里云 lit azw3 txt pdf caj 下载 在线
图说工厂现场管理(实战升级版) 阿里云 lit azw3 txt pdf caj 下载 在线
运气生猛 阿里云 lit azw3 txt pdf caj 下载 在线
***自助游 阿里云 lit azw3 txt pdf caj 下载 在线
- 直效销售 北京联合出版有限责任公司 阿里云 lit azw3 txt pdf caj 下载 在线
- 建设工程法规及相关知识 阿里云 lit azw3 txt pdf caj 下载 在线
- 电化学综合实验/材料科学研究与工程技术系列 阿里云 lit azw3 txt pdf caj 下载 在线
- 【任选】名家教你读医案(辑) 从医案中会名医理法方药思路的18 朱良春 阿里云 lit azw3 txt pdf caj 下载 在线
- 乌镇/中国文化知识读本 阿里云 lit azw3 txt pdf caj 下载 在线
- 【预订】* Arthritis * Help and Best Advice - Natural Alternative. Korean Edition. 阿里云 lit azw3 txt pdf caj 下载 在线
- 演播实务教程 中国传媒大学出版社 阿里云 lit azw3 txt pdf caj 下载 在线
- 质量员(土建方向)岗位知识(第二版) 阿里云 lit azw3 txt pdf caj 下载 在线
- 道钉.不再沉默-建设北美铁路的华工 阿里云 lit azw3 txt pdf caj 下载 在线
- 百科全书儿童读物6 12岁 全10册注音版中国少年儿童百科全书小学生6-7-10-12-15岁少儿百问百答动植物天文地理宇宙探索交通工具人文历史生活幼儿科普类书籍一二三年课外阅读书目 阿里云 lit azw3 txt pdf caj 下载 在线
书籍真实打分
故事情节:6分
人物塑造:9分
主题深度:9分
文字风格:6分
语言运用:7分
文笔流畅:7分
思想传递:5分
知识深度:4分
知识广度:5分
实用性:7分
章节划分:7分
结构布局:9分
新颖与独特:3分
情感共鸣:5分
引人入胜:6分
现实相关:4分
沉浸感:5分
事实准确性:4分
文化贡献:9分